Pages

Showing posts with label TEKNIK KIMIA. Show all posts
Showing posts with label TEKNIK KIMIA. Show all posts

BAHAN KONSTRUKSI TEKNIK KIMIA "KERAMIK"

BAHAN KONSTRUKSI TEKNIK KIMIA "KERAMIK"


Sejarah Keramik
            Keramik pada awalnya berasal dari bahasa Yunani keramikos yang artinya suatu bentuk dari tanah liat yang telah mengalami proses pembakaran.
Kamus dan ensiklopedia tahun 1950-an mendefinisikan keramik sebagai suatu hasil seni dan teknologi untuk menghasilkan barang dari tanah liat yang dibakar, seperti gerabah, genteng, porselin, dan sebagainya. Tetapi saat ini tidak semua keramik berasal dari tanah liat. Definisi pengertian keramik terbaru mencakup semua bahan bukan logam dan anorganik yang berbentuk padat. (Yusuf, 1998:2).
            Umumnya senyawa keramik lebih stabil dalam lingkungan termal dan kimia dibandingkan elemennya. Bahan baku keramik yang umum dipakai adalah felspard, ball clay, kwarsa, kaolin, dan air. Sifat keramik sangat ditentukan oleh struktur kristal, komposisi kimia dan mineral bawaannya. Oleh karena itu sifat keramik juga tergantung pada lingkungan geologi dimana bahan diperoleh. Secara umum strukturnya sangat rumit dengan sedikit elektron-elektron bebas.
            Kurangnya beberapa elektron bebas keramik membuat sebagian besar bahan keramik secara kelistrikan bukan merupakan konduktor dan juga menjadi konduktor panas yang jelek. Di samping itu keramik mempunyai sifat rapuh, keras, dan kaku. Keramik secara umum mempunyai kekuatan tekan lebih baik dibanding kekuatan tariknya.

Klasifikasi keramik
Pada prinsipnya keramik terbagi atas:
            1.Keramik tradisional
            Keramik tradisional yaitu keramik yang dibuat dengan menggunakan bahan alam, seperti kuarsa, kaolin, dll. Yang termasuk keramik ini adalah: barang pecah belah (dinnerware), keperluan rumah tangga (tile, bricks), dan untuk industri (refractory).
            2.Keramik halus
            Fine ceramics (keramik modern atau biasa disebut keramik teknik, advanced ceramic, engineering ceramic, techical ceramic) adalah keramik yang dibuat dengan menggunakan oksida-oksida logam atau logam, seperti: oksida logam (Al2O3, ZrO2, MgO,dll). Penggunaannya: elemen pemanas, semikonduktor, komponen turbin, dan pada bidang medis. (Joelianingsih, 2004)


Sifat Keramik
            Sifat yang umum dan mudah dilihat secara fisik pada kebanyakan jenis keramik adalah britle atau rapuh, hal ini dapat kita lihat pada keramik jenis tradisional seperti barang pecah belah, gelas, kendi, gerabah dan sebagainya, coba jatuhkan piring yang terbuat dari keramik bandingkan dengan piring dari logam, pasti keramik mudah pecah, walaupun sifat ini tidak berlaku pada jenis keramik tertentu, terutama jenis keramik hasil sintering, dan campuran sintering antara keramik dengan logam. sifat lainya adalah tahan suhu tinggi, sebagai contoh keramik tradisional yang terdiri dari clay, flint dan feldfar tahan sampai dengan suhu 1200 C, keramik engineering seperti keramik oksida mampu tahan sampai dengan suhu 2000 C. kekuatan tekan tinggi, sifat ini merupakan salah satu faktor yang membuat penelitian tentang keramik terus berkembang.
READ MORE - BAHAN KONSTRUKSI TEKNIK KIMIA "KERAMIK"

MACAM-MACAM POLIMER DAN CONTOHNYA

MACAM-MACAM POLIMER DAN CONTOHNYA
Selamat malam sobat, lama tidak jumpa nih...
Yap, kali ini admin akan share ilmu nih tentang macam-macam polimer yang sering kita gunakan sehari-hari. Masih belum tahu dengan macam-macam polimer dan contoh-contohnya apa saja? Kali ini kita kupas bersama yuuk... hehe
Let’s GO.....!!!!
J J J
1. Polietilen 
            Poli etilen adalah bahan termoplastik yang kuat dan dapat dibuat dari yang lunak sampai yang kaku. Ada dua jenis polietilen yaitu polietilen densitas rendah (low-density polyethylene / LDPE) dan polietilen densitas tinggi (high-density polyethylene / HDPE). Polietilen densitas rendah relatif lemas dan kuat, digunakan antara lain untuk pembuatan kantong kemas, tas, botol, industri bangunan, dan lain-lain.
            Polietilen densitas tinggi sifatnya lebih keras, kurang transparan dan tahan panas sampai suhu 1000C. Campuran polietilen densitas rendah dan polietilen densitas tinggi dapat digunakan sebagai bahan pengganti karat, mainan anak-anak, dan lain-lain.

2. Polipropilen
            Polipropilen mempunyai sifat sangat kaku; berat jenis rendah; tahan terhadap bahan kimia, asam, basa, tahan terhadap panas, dan tidak mudah retak. Plastik polipropilen digunakan untuk membuat alat-alat rumah sakit, komponen mesin cuci, komponen mobil, pembungkus tekstil, botol, permadani, tali plastik, serta bahan pembuat karung.

3. Polistirena
            Polistiren adalah jenis plastik termoplast yang termurah dan paling berguna serta bersifat jernih, keras, halus, mengkilap, dapat diperoleh dalam berbagai warna, dan secara kimia tidak reaktif. Busa polistirena digunakan untuk membuat gelas dan kotak tempat makanan, polistirena juga digunakan untuk peralatan medis, mainan, alat olah raga, sikat gigi, dan lainnya.

4. Polivinil klorida (PVC)
            Plastik jenis ini mempunyai sifat keras, kuat, tahan terhadap bahan kimia, dan dapat diperoleh dalam berbagai warna. Jenis plastik ini dapat dibuat dari yang keras sampai yang kaku keras. Banyak barang yang dahulu dapat dibuat dari karet sekarang dibuat dari PVC. Penggunaan PVC terutama untuk membuat jas hujan, kantong kemas, isolator kabel listrik, ubin lantai, piringan hitam, fiber, kulit imitasi untuk dompet, dan pembalut kabel.

5. Potetrafluoroetilena (teflon)
            Teflon memiliki daya tahan kimia dan daya tahan panas yang tinggi (sampai 2600C) Keistimewaan teflon adalah sifatnya yang licin dan bahan lain tidak melekat padanya. Penggorengan yang dilapisi teflon dapat dipakai untuk menggoreng telur tanpa minyak.

6. Polimetil pentena (PMP)
            Plastik poli metil pentena adalah plastik yang ringan dan melebur pada suhu 2400C. Barang yang dibuat dari PMP bentuknya tidak berubah bila dipanaskan sampai 2000C dan daya tahannya terhadap benturan lebih tinggi dari barang yang dibuat dari polistiren.
            Bahan ini tahan terhadap zat-zat kimia yang korosif dan tahan terhadap pelarut organik, kecuali pelarut organik yang mengandung klor, misalnya kloroform dan karbon tetraklorida. PMP cocok untuk membuat alat¬alat laboratorium dan kedokteran yang tahan panas dan tekanan, tanpa mengalami perubahan, Barang-barang dari bahan ini tahan lama.

READ MORE - MACAM-MACAM POLIMER DAN CONTOHNYA

BAHAN KONSTRUKSI TEKNIK KIMIA "POLIMER DAN JENISNYA"

BAHAN KONSTRUKSI TEKNIK KIMIA "POLIMER DAN JENISNYA" 

           Plastik adalah polimer; rantai-panjang atom mengikat satu sama lain. Rantai ini membentuk banyak unit molekul berulang, atau "monomer". Plastik yang umum terdiri dari polimer karbon saja atau dengan oksigen, nitrogen, chlorine atau belerang di tulang belakang. (beberapa minat komersial juga berdasar silikon). Tulang-belakang adalah bagian dari rantai di jalur utama yang menghubungkan unit monomer menjadi kesatuan. Untuk mengeset properti plastik grup molekuler berlainan "bergantung" dari tulang-belakang (biasanya "digantung" sebagai bagian dari monomer sebelum menyambungkan monomer bersama untuk membentuk rantai polimer). Pengesetan ini oleh grup "pendant" telah membuat plastik menjadi bagian tak terpisahkan di kehidupan abad 21 dengan memperbaiki properti dari polimer tersebut.
Pengembangan plastik berasal dari penggunaan material alami (seperti: permen karet, "shellac") sampai ke material alami yang dimodifikasi secara kimia (seperti: karet alami, "nitrocellulose") dan akhirnya ke molekul buatan-manusia (seperti: epoxy, polyvinyl chloride, polyethylene).

Sejarah Plastik
            Plastik merupakan material yang baru secara luas dikembangkan dan digunakan sejak abad ke-20 yang berkembang secara luar biasa penggunaannya dari hanya beberapa ratus ton pada tahun 1930-an, menjadi 150 juta ton/tahun pada tahun 1990-an dan 220 juta ton/tahun pada tahun 2005. Saat ini penggunaan material plastik di negara-negara Eropa Barat mencapai 60kg/orang/tahun, di Amerika Serikat mencapai 80kg/orang/tahun, sementara di India hanya 2kg/orang/tahun.

Jenis plastik
Plastik dapat digolongkan berdasarkan:
 
ü Sifat fisikanya
o Termoplastik. Merupakan jenis plastik yang bisa didaur-ulang/dicetak lagi dengan proses pemanasan ulang. Contoh: polietilen (PE), polistiren (PS), ABS, polikarbonat (PC)
o Termoset. Merupakan jenis plastik yang tidak bisa didaur-ulang/dicetak lagi. Pemanasan ulang akan menyebabkan kerusakan molekul-molekulnya. Contoh: resin epoksi, bakelit, resin melamin, urea-formaldehida

ü Kinerja dan penggunaanya
o Plastik komoditas
 sifat mekanik tidak terlalu bagus
 tidak tahan panas
 Contohnya: PE, PS, ABS, PMMA, SAN
 Aplikasi: barang-barang elektronik, pembungkus makanan, botol minuman
o Plastik teknik
 Tahan panas, temperatur operasi di atas 100 °C
 Sifat mekanik bagus
 Contohnya: PA, POM, PC, PBT
 Aplikasi: komponen otomotif dan elektronik
o Plastik teknik khusus
 Temperatur operasi di atas 150 °C
 Sifat mekanik sangat bagus (kekuatan tarik di atas 500 Kgf/cm²)
 Contohnya: PSF, PES, PAI, PAR
 Aplikasi: komponen pesawat

ü Berdasarkan jumlah rantai karbonnya
o 1 ~ 4 Gas (LPG, LNG)
o 5 ~ 11 Cair (bensin)
o 9 ~ 16 Cairan dengan viskositas rendah
o 16 ~ 25 Cairan dengan viskositas tinggi (oli, gemuk)
o 25 ~ 30 Padat (parafin, lilin)
o 1000 ~ 3000 Plastik (polistiren, polietilen, dll)

ü Berdasarkan sumbernya
o Polimer alami : kayu, kulit binatang, kapas, karet alam, rambut
o Polimer sintetis:
 Tidak terdapat secara alami: nylon, poliester, polipropilen, polistiren
 Terdapat di alam tetapi dibuat oleh proses buatan: karet sintetis
 Polimer alami yang dimodifikasi: seluloid, cellophane (bahan dasarnya dari selulosa tetapi telah mengalami modifikasi secara radikal sehingga kehilangan sifat-sifat kimia dan fisika asalnya)
Proses manufaktur plastik
• Injection molding
Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas diinjeksikan ke dalam cetakan.
• Ekstrusi
Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas secara kontinyu ditekan melalui sebuah orifice sehingga menghasilkan penampang yang kontinyu.
• Thermoforming
Lembaran plastik yang dipanaskan ditekan ke dalam suatu cetakan.
• Blow molding
            Bijih plastik (pellet) yang dilelehkan oleh sekrup di dalam tabung yang berpemanas secara kontinyu diekstrusi membentuk pipa (parison) kemudian ditiup di dalam cetakan.


Sifat polimer konduktif
            Polimer semikonduktif dan konduktif adalah polimer terkonjugasi yang menunjukkan perubahan ikatan tunggal dan ganda antara atom-atom karbon pada rantai utama polimer. Ikatan ganda diperoleh dari karbon yang memiliki empat elektron valensi, namun pada molekul terkonjugasi hanya memiliki tiga (kadang-kadang dua) atom lain. Elektron yang tersisa membentuk ikatan Ï€, elektron yang terdelokalisasi pada seluruh molekul. Suatu zat dapat bersifat polimer konduktif jika mempunyai ikatan rangkap yang terkonjugasi. Contoh dari polimer terkonjugasi adalah plastik tradisonal (polyethylen), sedangkan polimer konduktif antara lain : polyacetilen, polpyrol, polytiopen, polyaniline dan lain lain. Indonesia merupakan salah satu penghasil biji plastik untuk jenis Polypropyleneatau PP dan High Density PolyEthylene atau HDPE.

READ MORE - BAHAN KONSTRUKSI TEKNIK KIMIA "POLIMER DAN JENISNYA"

BAHAN KONSTRUKSI TEKNIK KIMIA "LOGAM"

             
BAHAN KONSTRUKSI TEKNIK KIMIA "LOGAM"

            Kata “Logam” berasal dari bahasa Yunani: “Metallon” yang berarti sebuah unsur kimia yang siap membentuk ion (kation) dan memiliki ikatan logam, dan kadangkala dikatakan bahwa ia mirip dengan kation di awan elektron. Metal adalah salah satu dari tiga kelompok unsur yang dibedakan oleh sifat ionisasi dan ikatan, bersama dengan metaloid dan nonlogam. Dalam tabel periodik, garis diagonal digambar dari boron (B) ke polonium (Po) membedakan logam dari nonlogam. Unsur dalam garis ini adalah metaloid, kadangkala disebut semi-logam; unsur di kiri bawah adalah logam; unsur ke kanan atas adalah nonlogam.
            Nonlogam lebih banyak terdapat di alam daripada logam, tetapi logam banyak terdapat dalam tabel periodik. Beberapa logam terkenal adalah aluminium, tembaga, emas, besi, timah, perak, titanium, uranium, dan zink.
Alotrop logam cenderung mengkilap, lembek, dan konduktor yang baik, sementara nonlogam biasanya rapuh (untuk nonlogam padat), tidak mengkilap, dan insulator.
            Dalam bidang astronomi, istilah logam seringkali dipakai untuk menyebut semua unsur yang lebih berat daripada helium.

v Paduan logam
      Paduan logam merupakan pencampuran dari dua jenis logam atau lebih untuk mendapatkan sifat fisik, mekanik, listrik dan visual yang lebih baik. Contoh paduan logam yang populer adalah baja tahan karat yang merupakan pencampuran dari baja (Fe)dengan Krom (Cr).

v Penggunaan Logam
      Umumnya, logam bermanfaat bagi manusia, karena penggunaannya di bidang industri, pertanian, dan kedokteran.
Contohnya, merkuri yang digunakan dalam proses klor alkali.
            Proses klor alkali merupakan proses elektrolisis yang berperan penting dalam industri manufaktur dan pemurnian zat kimia. Beberapa zat kimia yang dapat diperoleh dengan proses elektrolisis adalah natrium, kalsium, magnesium, aluminium, tembaga, seng, perak, hidrogen, klor, fluor, natrium hidroksida, kalium dikromat, dan kalium permanganat. Proses elektrolisis larutan natrium klorida tersebut merupakan proses klor-alkali. Elektrolisis larutan NaCl menghasilkan natrium hidroksida di katode (kutub positif) dan gas klor di anode (kutub negatif). Pada industri angkasa luar dan profesi kedokteran dibutuhkan bahan yang kuat, tahan karat, dan bersifat noniritin, seperti aloi titanium. Sebagian jenis logam merupakan unsur penting karena dibutuhkan dalam berbagai fungsi biokimiawi. Pada zaman dahulu, logam tertentu, seperti tembaga, besi, dan timah digunakan untuk membuat peralatan, perlengkapan mesin, dan senjata.

v Jenis-Jenis Logam
1.     Logam mulia
             Secara umum logam mulia berarti logam-logam termasuk paduannya yang biasa dijadikan perhiasan, antara lain emas, perak, perunggu dan platina. Logam-logam tersebut memiliki warna yang bagus, tahan karat, lunak dan terdapat dalam jumlah yang sedikit di alam. Emas dan perak memiliki sifat penghantar listrik yang sangat baik sehingga banyak dipakai untuk melapisi konektor-konektor pada perangkat elektronik.

Logam berat
            Logam berat (heavy metal) adalah logam dengan massa jenis lima atau lebih, dengan nomor atom 22 sampai dengan 92. Logam berat dianggap berbahaya bagi kesehatan bila terakumulasi secara berlebihan di dalam tubuh. Beberapa di antaranya bersifat membangkitkan kanker (karsinogen). Demikian pula dengan bahan pangan dengan kandungan logam berat tinggi dianggap tidak layak konsumsi.
            Kasus-kasus pencemaran lingkungan menyebabkan banyak bahan pangan mengandung logam berat berlebihan. Kasus yang populer adalah sindrom Minamata, sebagai akibat akumulasi raksa (Hg) dalam tubuh ikan konsumsi.
            Di Indonesia, pernah dilaporkan bahwa ikan-ikan di Teluk Jakarta juga memiliki kandungan raksa yang tinggi. Udang dari tambak Sidoarjo pernah ditolak importir dari Jepang karena dinilai memiliki kandungan kadmium (Cd) dan timbal (Pb) yang melebihi ambang batas. Diduga logam-logam ini merupakan dampak buangan limbah industri di sekitarnya. Kakao dari Indonesia juga pernah ditolak pada lelang internasional karena dinilai memiliki kandungan Cd di atas ambang batas yang diizinkan. Cd diduga berasal dari pupuk TSP yang diberikan kepada tanaman di perkebunan.
READ MORE - BAHAN KONSTRUKSI TEKNIK KIMIA "LOGAM"

KOMPOSIT DAN PENGGUNAANNYA


KOMPOSIT DAN PENGGUNAANNYA
Tahukah anda bahwa semua bahan-bahan yang sering kita lihat maupun  yang kita pakai itu kebanyakan terbuat dari komposit???
 Gak percaya? Simak langsung informasinya dibawah ini.. hehe

            Komposit adalah kelompok dari material yang terbentuk dengan menggabungkan dua (atau lebih) material dasar. Material yang satu bertindak sebagai matrik sedangkan material yang lainnya bertindak sebagai penguatnya, misalnya polimer sebagai matriknya, serat sebagai penguatnya sehingga dikenal denganfiber-reinforced polymer matrix composites. Sifat-sifat dari material komposit ini merupakan gabungan dari sifat-sifat material penyusunnya, di mana sifat gabungan ini tidak bisa dicapai dengan memproses material tunggal. Contoh lain dari komposit misalnya kayu lapis, beton, ban karet yang diperkuat dengan baja, aluminium yang diperkuat oleh alumina (alumina-reinforced aluminum matrix composites) dan lain-lain.

            Penggunaan yang paling umum dari komposit yang diperkuat oleh serat oleh fiber adalah sebagai material struktur yang memerlukan rigiditas, kekuatan dan densitas yang rendah (ringan). Sekarang ini raket tenis dan sepeda balap terbuat dari komposit epoksi-fiber yang kuat, ringan dan harganya tidak terlalu mahal. Dalam komposit ini, fiber/serat karbon tertanam di dalam matrik epoksi. Serat karbon memiliki kekuatan yang tinggi dan rigid tetapi keuletannya terbatas atau getas. Karena kegetasan ini maka tidak akan praktis jika raket tenis hanya terbuat dari karbon saja. Sedangkan epoksi yang tidak terlalu kuat, dalam komposit ini memiliki dua peran penting. Dia bertindak sebagai media untuk mentransfer beban ke serat, dan antarmuka serat-matrik membelokkan dan menghentikan retak kecil, sehingga membuat komposit dapat menahan retak lebih baik dari pada komponen/material tunggal_pembentukannya.

            Kekuatan dan rigiditas komposit serat karbon-epoksi dapat dikontrol dengan memvariasikan jumlah serat karbon yang dimasukkan ke dalam matrik epoksi. Kemampuan untuk mengatur sifat-sifat ini dan dikombinasikan dengan densitas yang rendah dan kemudahan fabrikasinya menjadikan material ini alternatif yang sangat menarik untuk berbagai aplikasi. Disamping untuk peralatan olah raga seperti dijelaskan tadi, komposit tersebut digunakan dalam pesawat udara seperti sudu-sudu kipas (fan blades) dalam mesin jet dan untuk permukaan kontrol dalam struktur_pesawat.

            Komposit dapat juga dibuat dengan memasukkan serat keramik yang kuat ke dalam matrik logam untuk menghasilkan material yang kuat dan rigid. Sebagai contoh, serat SiC dimasukkan ke dalam matrik aluminium. Komposit ini yang dikenal dengan komposit bermatrik logam (metal matrix composites) digunakan sebagai material struktur pesawat untuk komponen yang terkena beban menengah seperti skin badan_pesawat.

            Sedangkan komposit serat logam dalam matrik keramik dibuat untuk mendapatkan keuntungan dari kekuatan keramik dan mendapatkan keuletan dari serat logam yang dapat mendeformasi dan membelokkan retak. Pada waktu retak terbelokkan, dibutuhkan beban yang lebih agar retak tetap menjalar, dan karenanya material_menjadi_lebih_tangguh.

            Berikut ini beberapa kemungkinan pengembangan baru bagi komposit:
  • Potensi yang besar untuk mengurangi berat pesawat terbang. Penggunaan awal adalah untuk komponen dengan pembebanan ringan seperti penstabil vertikal dan permukaan kontrol yang terbuat dari komposit serat karbon-epoksi. Dengan komposit bermatrik logam, akan dimungkinkan penggunaan yang lebih luas termasuk untuk komponen dengan pembebanan yang berat.
  • Komposit bermatrik keramik yang tahan suhu tinggi akan meningkatkan suhu operasi dari mesin.
  • Peluang yang signifikan dalam peningkatan penggunaan komposit adalah untuk belajar mendisain dengan material yang mempunyai modus kegagalan yang sangat berbeda dengan material konvensional.
Nah, sekarang jadi percaya kan?? Tentu donk.... J:J:J:J
Terima kasih sudah berkunjung kawan. See you next time...!!! J J


READ MORE - KOMPOSIT DAN PENGGUNAANNYA

PENERAPAN SEL VOLTA DAN SEL ELECTROLISIS

PENERAPAN SEL VOLTA DAN SEL ELECTROLISIS


1. Penerapan Sel Volta pada aki
            Aki atau accumulator merupakan sel volta yang tersusun atas elektroda Pb dan PbO, dalam larutan asam sulfat yang berfungsi sebagai elektrolit. Pada aki, sel disusun dalam beberapa pasang dan setiap pasang menghasilkan 2 Volt.
            Aki umumnya kita temui memiliki potensial sebesar 6 Volt (kecil) sebagai sumber arus sepeda motor dan 12 V (besar) untuk mobil. Aki merupakan sel yang dapat diisi kembali, sehingga aki dapat dipergunakan secara terus menerus. Sehingga ada dua mekanisme reaksi yang terjadi. Reaksi penggunaan aki merupakan sel volta, dan reaksi pengisian menggunakan arus listrik dari luar seperti peristiwa elektrolisa. Mekanisme reaksi ditampilkan pada Bagan reaksi.

2. Penerapan Sel Volta Pada Baterai
            Baterai atau sel kering merupakan salah satu sel volta, yaitu sel yang menghasilkan arus listrik, berbeda dengan aki, batere tidak dapat diisi kembali.
Sehingga batere juga disebut dengan sel primer dan aki dikenal dengan sel sekunder. Batere disusun oleh Seng sebagai anoda, dan grafit dalam elektrolit MnO2, NH4Cl dan air bertindak sebagai katoda. Reaksi yang terjadi pada sel kering adalah :
            Sel bahan bakar merupakan bagian dari sel volta yang mirip dengan aki atau batere, dimana bahan bakarnya diisi secara terus menerus, sehingga dapat dipergunakan secara terus menerus juga. Bahan baku dari sel bahan bakar adalah gas hidrogen dan oksigen, sel ini digunakan dalam pesawat ruang angkasa.

3. Baterai Nikel-Kadmium
            Baterai Nikel-Kadmium merupakan baterai kering yang dapat di isi ulang.Reaksi sel yang terjadi sebagai berikut:
Anode : Cd + 2OH- Cd(OH)2 + 2e
Katode :NiO2 + 2H2 O + 2e Ni(OH)2 + Ni(OH)2 +
Cd + NiO2 + 2H2O Cd(OH)2 + Ni(OH)2
Hasil-hasil reaksi pada baterai nikel-kadmium merupakan zat padat yang melekat pada kedua elektrodenya.Pengisian dilakukan dengan membalik arah aliran electron pada kedua electrode.

4. Baterai Perak Oksida
            Susunan baterai perak oksida yaitu Zn (sebagai anode), Ag2O (sebagai katode), dan pasta KOH sebagai elektrolit.reaksinya sebagai berikut:
Anode :Zn + 2OH- Zn(OH)2 + 2e
Katode :Ag2O + H2O + 2e 2Ag + 2OH-
Baterai perak oksida memiliki potensial sel sebesar 1,5 volt dan bertahan dalam waktu yang lama.Kegunaan baterai jenis ini adalah untuk arloji,kalkulator dan berbagai jenis peralatan elektrolit lainnya.

5. Sel Bahan Bakar
            Sel bahan bakar merupakan selyang menggunakan bahan bakar campuran hydrogen dengan oksigen atau campuran gas alam dengan oksigen. Bahan bakar (pereaksi) dialirkan terus menerus. Gas oksigen dialirkan ke katode melalui suatu bahan berpori yang mengkatalis reaksi dan gas hydrogen dialirkan ke anode. Sel seperti ini biasa di gunakan untuk sumber listrik pada pesawat luar angkasa.

6. Proses dalam penyepuhan
            Elektroplating atau penyepuhan merupakan proses pelapisan permukaan logam dengan logam lain. Misalnya tembaga dilapisi dengan emas dengan menggunakan elektrolit larutan emas (AuCl3).
Emas (anoda)                       : Au(s)
Au3+(aq) + 3e (oksidasi)
Tembaga (katoda)   : Au3+(aq) + 3e
Au(s) (reduksi)
            Dari persamaan reaksi tampak pada permukaan tembaga akan terjadi reaksi reduksi Au3+(aq) + 3e Au(s). Dengan kata lain emas Au terbentuk pada permukaan tembaga dalam bentuk lapisan tipis. Ketebalan lapisan juga dapat diatur sesuai dangan lama proses reduksi. Semakin lama maka lapisan yang terbentuk semakin tebal.

7. Proses Sintesa
            Sintesa atau pembuatan senyawa basa, cara elektrolisa merupakan teknik yang handal. Misalnya pada pembuatan logam dari garam yaitu K, Na dan Ba dari senyawa KOH, NaOH, Ba(OH)2, hasil samping dari proses ini adalah terbentuknya serta pada pembuatan gas H2, O2, dan Cl2. Seperti reaksi yang telah kita bahas. Dalam skala industri, pembuatan Cl2 dan NaOH dilakukan dengan elektrolisis larutan NaCl dengan reaksi sebagai berikut:

8. Proses pemurnian logam
            Proses pemurnian logam juga mengandalkan proses elektrolisa. Proses pemurnian tembaga merupakan contoh yang menarik dan mudah dilaksanakan. Pemurnian ini menggunakan elektrolit yaitu CuSO4. Pada proses ini tembaga yang kotor dipergunakan sebagai anoda, dimana zat tersebut akan mengalami oksidasi, Cu(s)
Cu2+(aq) + 2e
Reaksi oksidasi ini akan melarutkan tembaga menjadi Cu2+. Dilain pihak pada katoda terjadi reaksi reduksi Cu2+ menjadi tembaga murni. Mula-mula Cu2+berasal dari CuSO4, dan secara terus menerus digantikan oleh Cu2+ yang berasal dari pelarutan tembaga kotor. Proses reaksi redoks dalam elektrolisis larutan CuSO4 adalah :
CuSO4(aq)
Cu2+(aq) + SO42Ͳ(aq)


Katoda: Cu2+(aq) + 2e
Cu(s)
Anoda : Cu(s)
Cu2+(aq) + 2e
            Pengotor tembaga umumnya terdiri dari perak, emas, dan platina. Oleh karena E0 unsur Ag, Pt dan Au > dari E0 Cu, maka ketiga logam tidak larut dan tetap berada di anoda biasanya berupa lumpur. Demikian juga jika pengotor berupa Fe atau Zn, unsur ini dapat larut namun cukup sulit tereduksi dibandingkan Cu, sehingga tidak mengganggu proses reduksi Cu.

READ MORE - PENERAPAN SEL VOLTA DAN SEL ELECTROLISIS

ANALISIS PERMANGANOMETRI

ANALISIS PERMANGANOMETRI








 PENGERTIAN
     Permanganometri adalah metode titrasi redoks dengan pereaksi MnO4- (ion permanganat). Kalium permanganat merupakan oksidator yang dapat bereaksi dengan cara yang berbeda- beda, tergantung dari pH larutannya. Kekuatannya sebagai oksidator yang berbeda- beda sesuai dengan reaksi yang terjadi pada pH yang berbeda itu. Reaksi yang bermacam ragam ini disebabkan oleh keanekaragaman valensi Mn, dari 1 sampai dengan 7 yang semuanya stabil kecuali valensi 1 dan 5. Reduksi MnO4- berlangsung sebagai berikut:
      1. Dalam suasana asam [H+], 0,1N atau lebih.
MnO4-    +   8H+   +   5e-      à    Mn2+  +    4H2O.........................................(1)
      2. Dalam suasana netral, pH 4-10
MnO4-   +    4H+   +   3e-  à  MnO2  +  2H2O................................................(2)
      3. Dalam suasana basa [OH-] 0,1N atau lebih
MnO4-     +     e-   Ã     MnO42-
      Kebanyakan titrasi dilakukan dalam keadaan asam menurut (1), disamping itu ada beberapa titrasi yang sangat penting dalam suasana basa untuk bahan- bahan organik. Daya oksidasi MnO4- dalam keadaan ini lebih kecil sehingga letak keseimbangan kurang menguntungkan. Untuk menarik keseimbangan kearah hasil titrasi, titrat ditambah Ba2+yang dapat mengendapkan MnO42- menjadi BaMnO4. Selain menggeser keseimbangan kearah kanan, pengendapan ini juga mencegah reduksi MnO4- itu lebih lanjut. (Harjadi, 1993)                              
Pada permanganometri, titran yang digunakan adalah kalium permanganat. Kalium permanganat mudah diperoleh dan tidak memerlukan indikator kecuali digunakan larutan yang sangat encer serta telah digunakan secara luas sebagai pereaksi oksidasi selama seratus tahun lebih. Setetes permanganat memberikan suatu warna merah muda yang jelas kepada volume larutan dalam suatu titrasi. Warna ini digunakan untuk menunjukkan kelebihan pereaksi.

Kalium Permanganat distandarisasikan dengan menggunakan natrium oksalat atau sebagai arsen (III) oksida standar-standar primer. Reaksi yang terjadi pada proses pembakuan kalium permanganat menggunakan natrium oksalat adalah:
5C2O4- + 2MnO4- + 16H+ →  10CO2 + 2Mn2+ + 8H2O
Akhir titrasi ditandai dengan timbulnya warna merah muda yang disebabkan kelebihan permanganat (Day and Underwood, 1980).

Kalium permangatat sukar diperoleh secara sempurna murni dan bebas sama sekali dari mangan oksida. Lagipula, air suling yang biasa mungkin mengandung zat-zat pereduksi yang akan bereaksi dengan kalium permanganat dengan membentuk mangan dioksida serta bukanlah suatu larutan standar primer. (weebly.materi-redoks)

Dalam larutan asam, permanganat (VII) akan tereduksi sehingga tidak berwarna dan bilangan oksidasinya menjadi +2 (ion mangan(II) (Mn2+)).
8 H+ + MnO4 + 5 e → Mn2+ + 4 H2O
Dalam larutan basa kuat, permanganat (VII) akan tereduksi, warnanya menjadi hijau, dengan bilangan oksidasi +6 (manganat MnO42−).
MnO4 + e → MnO42−
Dalam larutan netral, ion ini akan tereduksi sehingga bilangan oksidasinya menjadi +4, warnanya hijau (mangan dioksida MnO2).
2 H2O + MnO4 + 3 e → MnO2 + 4 OH. (wikipedia Permangana).

        Reaksi ini difokuskan pada reaksi oksidasi dan reduksi yang terjadi antara KMnO4 dengan bahan baku tertentu. Titrasi dengan KMnO4 sudah dikenal lebih dari seratus tahun. Kebanyakan titrasi dilakukan dengan cara langsung atas alat yang dapat dioksidasi seperti Fe+, asam atau garam oksalat yang dapat larut dan sebagainya. Beberapa ion logamyang tidak dioksidasi dapat dititrasi secara tidak langsung dengan permanganometri seperti:
(1) ion-ion Ca, Ba, Sr, Pb, Zn, dan Hg (I) yang dapat diendapkan sebagai oksalat. Setelah endapan disaring dan dicuci, dilarutkan dalam H2SO4 berlebih sehingga terbentuk asam oksalat secara kuantitatif. Asam oksalat inilah yang akhirnya dititrasi dan hasil titrasi dapat dihitung banyaknya ion logam yang bersangkutan.
(2) ion-ion Ba dan Pb dapat pula diendapkan sebagai garam khromat. Setelah disaring, dicuci, dan dilarutkan dengan asam, ditambahkan pula larutan baku FeSO4 berlebih. Sebagian Fe2+ dioksidasi oleh khromat tersebut dan sisanya dapat ditentukan banyaknya dengan menitrasinya dengan KMnO4.
        Kalium permanganat merupakan oksidator kuat dalam larutan yang bersifat asam lemah, netral atau basa lemah. Titrasi harus dilakukan dalam larutan yang bersifat asam kuat karena reaksi tersebut tidak terjadi bolak-balik, sedangkan potensial elktroda sangat bergantung pada pH. Pereaksi kalium permanganat bukan merupakan larutan baku primer dan karenanya perlu dibakukan terlebih dahulu.

Penentuan-penentuan dengan Permanganat
            Penentuan besi dalam bijih-bijih besi adalah salah satu aplikasi terpenting dari titrasi-titrasi permanganate. Asam terbaik untuk melerutkan bijih-bijh besi adalah asm klorida, dan Timah (II) klorida sering ditambahkan untuk membantu proses pelarutan. Sebelum titrasi dengan permanganate setiap besi (III) harus direduksi menjadi besi (II). Timah (II) klorida biasanya dipergunakan untuk mereduksi besi dalam sampel-sampel yang telah dilarutkan dalam asam klorida. Larutan pencegah Zimmermann-Reinhardt lalu ditambahkan jika titrasi akan dilakukan dengan permanganate.
Metode permanganometri didasarkan atas reaksi oksidasi ion permanganat. Oksidasi ini dapat dijalankan dalam suasana asam, netral ataupun alkali. Jika titrasi dilakukan dalam lingkungan asam, maka akan terjadi reaksi
MnO4-  +  4 H+  +  3 e    à   Mn2+  +  4 H2O
Dimana potensial oksidasinya sangat dipengaruhi oleh adanya kepekatan ion hidrogen akan tetapi konsentrasi ion mangan (II) pada persenyawaan di atas tidak terlalu berpengaruh terhadap potensial redoks, karena konsentrasi ion mangan (II) sendiri mampu mereduksi ion permanganat dengan membentuk ion ion Mn3+dan MnO2. Dalam suasana asam reaksi di atas berjalan sangat lambat, tetapi masih cukup cepat untuk memucatkan warna dari permanganat setelah reaksi sempurna.

SUMBER:
Hardjadi, W. 1993. Ilmu Kimia Analitik Dasar Cetakan ke-3. Jakarta : Gramedia Pustaka Utama
http://evelyta-appe.blogspot.com/2013/06/permanganometri.html
http://catatankimia.com/catatan/titrasi-permanganometri.html
http://id.wikipedia.org/wiki/Permanganometri


READ MORE - ANALISIS PERMANGANOMETRI
 

Search This Blog

Most Reading

Powered by Blogger.